COMMUNICABLE DISEASES Communicable Disease- a disease that is

Single Celled Microorganisms

Microorganism / September 4, 2019

You may think of unicellular organisms as the simpletons of life on Earth, but Oxytricha trifallax is a prime example of just how remarkably complex single life can be. This unassuming microorganism performs genetic gymnastics during development, unravelling its jigsaw genome and rearranging some quarter-million pieces of DNA. What’s more, it manages the whole process in just 60 hours.

O. trifallax is a single-celled, algae gobbling eukaryote (organism with a defined nucleus) that is widespread on Earth. Princeton scientists, headed by Laura Landweber, have been studying the impressive genetics of this pond-dwelling organism for several years now, and its complexity has not ceased to amaze them.

Alongside its unique genome, this organism has several unusual features that make it stand out from the crowd. O. trifallax cells are large, around 10 times the size of your “average” human cell, and they contain two nuclei instead of one. The nucleus is a membrane-bound organelle that stores genetic information in the form of DNA.

O. trifallax keeps its active DNA in one working nucleus and uses the other as a storage box for an archive of scrambled genetic material that can be passed on to the next generation. It is the DNA within the latter—known as the germline nucleus—which is disassembled and subsequently rearranged in order to produce a new working, or somatic, nucleus in the offspring.

But this organism’s peculiarity doesn’t end there. Offspring spawn from a single organism, so rather than using sex to reproduce, O. trifallax cells do the deed solely to swap genetic material between one another. This allows them to trade in aging genes for new ones, diversifying their genome. “It’s kind of like science fiction—they stop aging by trading in their old parts, ” Landweber said in a news release.

All you need is here